MATH 20D Spring 2023 Lecture 20.

Transforms of Discontinuous Functions and Application to IVP's.

Outline

Announcements

- Homework 6 has been shortened. Please see Canvas, Gradescope, or Zulip for the latest version of the assignment.

Announcements

- Homework 6 has been shortened. Please see Canvas, Gradescope, or Zulip for the latest version of the assignment.
- Material from section 7.9 of Nagle, Saff, and Snider on Impulses and the Dirac Delta Function will not be assesed on the midterm.

Announcements

- Homework 6 has been shortened. Please see Canvas, Gradescope, or Zulip for the latest version of the assignment.
- Material from section 7.9 of Nagle, Saff, and Snider on Impulses and the Dirac Delta Function will not be assesed on the midterm.
- I will host additional office hours this Tuesday 4-6pm in HSS 4085.

Announcements

- Homework 6 has been shortened. Please see Canvas, Gradescope, or Zulip for the latest version of the assignment.
- Material from section 7.9 of Nagle, Saff, and Snider on Impulses and the Dirac Delta Function will not be assesed on the midterm.
- I will host additional office hours this Tuesday 4-6pm in HSS 4085.
- To supplement your study for midterm 2. A list of suggested textbook exercises is available in the exam material folders in the files tab on canvas. Answers to odd numbered exercises available in the back of the book.

Announcements

- Homework 6 has been shortened. Please see Canvas, Gradescope, or Zulip for the latest version of the assignment.
- Material from section 7.9 of Nagle, Saff, and Snider on Impulses and the Dirac Delta Function will not be assesed on the midterm.
- I will host additional office hours this Tuesday 4-6pm in HSS 4085.
- To supplement your study for midterm 2. A list of suggested textbook exercises is available in the exam material folders in the files tab on canvas. Answers to odd numbered exercises available in the back of the book.
- The primary references for midterm 2 is lectures 11-20 and homeworks 4,5, and 6.

Solving IVP's using Laplace transform

- Last time we say how the formulas $\mathscr{L}\left\{y^{\prime}(t)\right\}(s)=s \mathscr{L}\{y(t)\}(s)-y(0)$ and

$$
\mathscr{L}\left\{y^{\prime \prime}(t)\right\}(s)=s^{2} \mathscr{L}\{y(t)\}(s)-s y(0)-y^{\prime}(0)
$$

can be applied to give solutions to initial value problems.

- Last time we say how the formulas $\mathscr{L}\left\{y^{\prime}(t)\right\}(s)=s \mathscr{L}\{y(t)\}(s)-y(0)$ and

$$
\mathscr{L}\left\{y^{\prime \prime}(t)\right\}(s)=s^{2} \mathscr{L}\{y(t)\}(s)-s y(0)-y^{\prime}(0)
$$

can be applied to give solutions to initial value problems.

- An important feature of \mathscr{L} is that it transforms differential equations in t-space into algebraic equations in s-space.

Example

Suppose $a \neq 0, b$ and c are constants such that $b^{2}-4 a c<0$. Using the method of Laplace transform, solve the initial value problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

where y_{1} and y_{2} are arbitrary constants.

The Heaviside Step Function and Laplace Transform I

Recall that the Heaviside step functions is defined by

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>1\end{cases}
$$

If $f(t)$ is piecewise continuous of exponential order $\alpha>0$, then

$$
\mathscr{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} \mathscr{L}\{f(t)\}(s), \quad s>\alpha
$$

where $a \geqslant 0$ is constant.

The Heaviside Step Function and Laplace Transform I

Recall that the Heaviside step functions is defined by

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>1\end{cases}
$$

If $f(t)$ is piecewise continuous of exponential order $\alpha>0$, then

$$
\mathscr{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} \mathscr{L}\{f(t)\}(s), \quad s>\alpha
$$

where $a \geqslant 0$ is constant. In particular $\mathscr{L}\{u(t-a)\}(s)=e^{-a s} / s, s>0$.

Example

Calculate
(a) $\mathscr{L}\left\{(t-1)^{2} u(t-1)\right\}(s)$,

The Heaviside Step Function and Laplace Transform I

Recall that the Heaviside step functions is defined by

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>1\end{cases}
$$

If $f(t)$ is piecewise continuous of exponential order $\alpha>0$, then

$$
\mathscr{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} \mathscr{L}\{f(t)\}(s), \quad s>\alpha
$$

where $a \geqslant 0$ is constant. In particular $\mathscr{L}\{u(t-a)\}(s)=e^{-a s} / s, s>0$.

Example

Calculate
(a) $\mathscr{L}\left\{(t-1)^{2} u(t-1)\right\}(s)$,
(b) $\mathscr{L}\{\cos (t) u(t-\pi)\}(s)$,

The Heaviside Step Function and Laplace Transform I

Recall that the Heaviside step functions is defined by

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>1\end{cases}
$$

If $f(t)$ is piecewise continuous of exponential order $\alpha>0$, then

$$
\mathscr{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} \mathscr{L}\{f(t)\}(s), \quad s>\alpha
$$

where $a \geqslant 0$ is constant. In particular $\mathscr{L}\{u(t-a)\}(s)=e^{-a s} / s, s>0$.

Example

Calculate
(a) $\mathscr{L}\left\{(t-1)^{2} u(t-1)\right\}(s)$,
(b) $\mathscr{L}\{\cos (t) u(t-\pi)\}(s)$,
(c) $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}}\right\}(t)$

The Heaviside Step Function and Laplace Transform I

Recall that the Heaviside step functions is defined by

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>1\end{cases}
$$

If $f(t)$ is piecewise continuous of exponential order $\alpha>0$, then

$$
\mathscr{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} \mathscr{L}\{f(t)\}(s), \quad s>\alpha
$$

where $a \geqslant 0$ is constant. In particular $\mathscr{L}\{u(t-a)\}(s)=e^{-a s} / s, s>0$.

Example

Calculate
(a) $\mathscr{L}\left\{(t-1)^{2} u(t-1)\right\}(s)$,
(b) $\mathscr{L}\{\cos (t) u(t-\pi)\}(s)$,
(c) $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}}\right\}(t)$
(d) $\mathscr{L}\left\{\Pi_{a, b}(t)\right\}(s)$ with $0 \leqslant a<b<\infty$ constant and

$$
\Pi_{a, b}(t)= \begin{cases}0, & t<a \text { or } t>b \\ 1, & a<t<b\end{cases}
$$

An application to Mixing

Example

A brine solution flows into a tank containing 500L of solution via one of two input valves. The solution is kept well stirred and flows out at a rate of $10 \mathrm{~L} / \mathrm{min}$. Initially the tank contains 10 kg of salt.

An application to Mixing

Example

A brine solution flows into a tank containing 500L of solution via one of two input valves. The solution is kept well stirred and flows out at a rate of $10 \mathrm{~L} / \mathrm{min}$. Initially the tank contains 10 kg of salt.

- Initially valve A is open releasing a brine solution containing 0.02 kilograms of salt per liter at a rate $10 \mathrm{~L} / \mathrm{min}$ into the tank.

Example

A brine solution flows into a tank containing 500L of solution via one of two input valves. The solution is kept well stirred and flows out at a rate of $10 \mathrm{~L} / \mathrm{min}$. Initially the tank contains 10 kg of salt.

- Initially valve A is open releasing a brine solution containing 0.02 kilograms of salt per liter at a rate $10 \mathrm{~L} / \mathrm{min}$ into the tank.
- After 10 minutes valve B is switched in and releases a brine solution containg 0.04 kilograms of salt per liter at a rate $10 \mathrm{~L} / \mathrm{min}$ into the tank.

Example

A brine solution flows into a tank containing 500L of solution via one of two input valves. The solution is kept well stirred and flows out at a rate of $10 \mathrm{~L} / \mathrm{min}$. Initially the tank contains 10 kg of salt.

- Initially valve A is open releasing a brine solution containing 0.02 kilograms of salt per liter at a rate $10 \mathrm{~L} / \mathrm{min}$ into the tank.
- After 10 minutes valve B is switched in and releases a brine solution containg 0.04 kilograms of salt per liter at a rate 10L/min into the tank.

Using the method of Laplace transform, find an expression for the amount of salt in the tank at time t.

The Heaviside Step Function and Laplace Transform II

Example

Using the method of Laplace transform, solve the initial value problem

$$
y^{\prime \prime}(t)+4 y(t)=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0,
$$

where

$$
g(t)= \begin{cases}1, & 0<t<1 \\ -1, & 1<t<2 \\ 0, & 2<t\end{cases}
$$

